Anti Cross-Site-Scripting revisited:
Checksum-based integrity checks

Hauke Jan Libbers
December 1, 2015

Abstract

This proposal describes a possible extension of the HTML standard
which aims to secure websites against the injection of JavaScript on the
client-side (Cross-Site-Scripting). To be executed by the browser each
script tag must provide a checksum of the code it provides. The checksum
is formed by a standard algorithm like SHA-256 applied to the code to be
executed and salted with a value that is given in a meta element in the
pages header. The value is randomly generated for each HTTP request.
If a script tag does not provide a valid checksum the contained code is not
executed. JavaScript embedded in other HTML elements is not executed.

1 Motivation

Cross-Site-Scripting (XSS) vulnerabilities remain one of the most wide-spread
vulnerabilities of todays dynamic websites. [2] Even organizations widely re-
spected for their web engineering are vulnerable for this type of attack: Accord-
ing to Google security researchers the largest share of vulnerabilities reported
via their bug bounty program are XSS vulnerabilities. [1]

2 Proposal

I propose to extend the HTML standard to enable browsers to verify the in-
tegrity and authenticity of JavaScript code. The proposal does not interfere
with the functionality of websites which do not make use of the proposed op-
tions and therefore is backwards compatible, which is important for acceptance
with browser vendors. It is related to the W3C Candidate Recommendation on
Subresource Integrity. [3]

2.1 Example

The following example shows the usage of the proposed functionality for both an
external JavaScript file that is included in the head and an inline script block.

<!doctype HTML>

<html>
<head>
<meta http-equiv="script-integrity-salt" content="e3b0c9...952b855" />
<script src="js/good.js"
integrity="sha256-H4u...Gle377script-integrity-salted">
</head>
<body>

<script integrity="sha256-Li9...EbzJr7?script-integrity-salted">
// Inline JavaScript
</script>
</body>
</html>

2.2 Changes to the standard

The proposal requires the integration of a pragma extension ”script-integrity-
salt” for the http-equiv attribute in meta elements. It furthermore builds up
on the work of the W3C Candidate Recommendation on Subresource Integrity
[3] using the integrity attribute to include the checksum followed by an option-
expression ”script-integrity-salted” as defined in the candidate. The browsers
behavior only changes if the ”script-integrity-salt” pragma is present. If the
pragma is present and the browser supports the functionality it will check the
integrity of every script section before it is executed. JavaScript embedded in
other HTML element, for example via ”onclick” event listeners, is disabled.

2.3 Attack vector review

Because the script integrity salt is randomly generated on the server side for
each request the integrity checksums change every time a user reloads the page.
Therefore an attacker cannot extract or guess a valid checksum, in order to get
their injected JavaScript code executed. It therefore protects against reflected
and stored XSS - if the user communicates via a secure channel (HTTPS). Two
XSS attack vectors remain: If the attacker can include code in a JavaScript
section of a website that is generated on the server-side (stored XSS) this code is
part of the script when the checksum is generated. Developers should not include
user data directly in the JavaScript code, but access it via for example AJAX
or from other DOM elements. The other remaining vector is the execution of
code that can be manipulated by the user via eval() or other DOM-based XSS
attacks (via vulnerabilities in the JavaScript code itself).

3 Implementation

A proof-of-concept could be implemented as an extension for a popular browser.
The changes to the HTML standard were minimized - but it takes time to get

them accepted and implemented. To gain acceptance in the developer commu-
nity it is important to include the needed functionality in common web frame-

works.
References
[1] L. Essers. (2012, May) Bug bounty hunters reveal eight vulnerabil-

ities in google services. Visited December 1st 2015. [Online]. Avail-
able: http://www.pcworld.com/article/256151 /bug_bounty_hunters_reveal
eight_vulnerabilities_in_google_services.html

E. Kovacs. (2015, July) Invitation-only — bug bounty pro-
grams becoming more popular: Bugcrowd. Visited Decem-
ber 1st 2015. [Online]. Available: http://www.securityweek.com/
invitation-only-bug-bounty-programs-becoming-more-popular-bugcrowd

F. M. J. W. Devdatta Akhawe, Frederik Braun. (2015, November)
Subresource integrity. Visited December 1st 2015. [Online]. Available:
https://w3c.github.io/webappsec-subresource-integrity /

